38 lines
1.1 KiB
Markdown
38 lines
1.1 KiB
Markdown
如果想用同時打亂x_train與y_train,可以參考這2個方法。
|
||
|
||
## 1. 用 `tf.random.shuffle`
|
||
```python
|
||
indices = tf.range(start=0, limit=tf.shape(x_data)[0], dtype=tf.int32)
|
||
idx = tf.random.shuffle(indices)
|
||
x_data = tf.gather(x_data, idx)
|
||
y_data = tf.gather(y_data, idx)
|
||
```
|
||
|
||
先建立一個跟array一樣大的list,然後打亂它,再用這個已打亂的list當作索引來建立一個新的data list。
|
||
|
||
## 2. 用 `Dataset.shuffle`
|
||
|
||
^832c8c
|
||
|
||
```python
|
||
x_train = tf.data.Dataset.from_tensor_slices(x)
|
||
y_train = tf.data.Dataset.from_tensor_slices(y)
|
||
|
||
x_train, y_train = x_train.shuffle(buffer_size=2, seed=2), y_train.shuffle(buffer_size=2, seed=2)
|
||
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
|
||
```
|
||
|
||
或者
|
||
|
||
```python
|
||
BF = 2
|
||
SEED = 2
|
||
def shuffling(dataset, bf, seed_number):
|
||
return dataset.shuffle(buffer_size=bf, seed=seed_number)
|
||
|
||
x_train, y_train = shuffling(x_train, BF, SEED), shuffling(y_train, BF, SEED)
|
||
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
|
||
```
|
||
|
||
概念跟第一點是一樣的,但是這是先轉成 `tf.data.Dataset`,然後把x_train跟y_train都用同樣的seed打亂。
|