vault backup: 2023-11-14 10:25:23
This commit is contained in:
37
.obsidian/workspace.json
vendored
37
.obsidian/workspace.json
vendored
@@ -34,9 +34,21 @@
|
||||
},
|
||||
"pinned": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "26dbd5276842579d",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "04. Programming/Machine Learning.md",
|
||||
"mode": "source",
|
||||
"source": true
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 1
|
||||
"currentTab": 2
|
||||
}
|
||||
],
|
||||
"direction": "vertical"
|
||||
@@ -65,7 +77,7 @@
|
||||
"state": {
|
||||
"type": "search",
|
||||
"state": {
|
||||
"query": "numpy ",
|
||||
"query": "softma",
|
||||
"matchingCase": false,
|
||||
"explainSearch": false,
|
||||
"collapseAll": false,
|
||||
@@ -82,7 +94,8 @@
|
||||
"state": {}
|
||||
}
|
||||
}
|
||||
]
|
||||
],
|
||||
"currentTab": 1
|
||||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
@@ -102,7 +115,7 @@
|
||||
"state": {
|
||||
"type": "backlink",
|
||||
"state": {
|
||||
"file": "00. Inbox/01. TODO.md",
|
||||
"file": "04. Programming/Machine Learning.md",
|
||||
"collapseAll": false,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical",
|
||||
@@ -127,7 +140,7 @@
|
||||
"state": {
|
||||
"type": "outline",
|
||||
"state": {
|
||||
"file": "00. Inbox/01. TODO.md"
|
||||
"file": "04. Programming/Machine Learning.md"
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -155,12 +168,12 @@
|
||||
"state": {
|
||||
"type": "file-properties",
|
||||
"state": {
|
||||
"file": "00. Inbox/01. TODO.md"
|
||||
"file": "04. Programming/Machine Learning.md"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 5
|
||||
"currentTab": 3
|
||||
},
|
||||
{
|
||||
"id": "ae4bf98badbfc7ee",
|
||||
@@ -198,13 +211,16 @@
|
||||
"periodic-notes:Open today": false
|
||||
}
|
||||
},
|
||||
"active": "3b4577823cedf427",
|
||||
"active": "26dbd5276842579d",
|
||||
"lastOpenFiles": [
|
||||
"04. Programming/categorical_crossentropy.md",
|
||||
"05. 資料收集/An example that use categorical_crossentropy and softmax.md",
|
||||
"04. Programming/Machine Learning.md",
|
||||
"00. Inbox/01. TODO.md",
|
||||
"01. 個人/01. Daily/2023-11-13(週一).md",
|
||||
"05. 資料收集/讀書筆記/20231113 - 戰爭裡的世界史.md",
|
||||
"05. 資料收集/讀書筆記/20230801 - 蘇格拉底哲學特快車.md",
|
||||
"01. 個人/01. Daily/2023-11-12(週日).md",
|
||||
"00. Inbox/01. TODO.md",
|
||||
"00. Inbox/除草劑.md",
|
||||
"05. 資料收集/Tool Setup/Software/Visual Studio Code.md",
|
||||
"01. 個人/01. Daily/2023-11-11(週六).md",
|
||||
@@ -224,10 +240,7 @@
|
||||
"01. 個人/01. Daily/2023-10-26(週四).md",
|
||||
"未命名.canvas",
|
||||
"04. Programming/Python/matplotlib.md",
|
||||
"01. 個人/01. Daily/2023/08/2023-08-01(週二).md",
|
||||
"01. 個人/01. Daily/2023/09",
|
||||
"01. 個人/01. Daily/2023-10-24(週二).md",
|
||||
"01. 個人/01. Daily/2023/09/2023-09-04(週一).md",
|
||||
"01. 個人/01. Daily/2023/08",
|
||||
"01. 個人/01. Daily/2023/05",
|
||||
"00. Inbox/My Mindmap.canvas",
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
|
||||
## 問題分類
|
||||
|
||||
| 問題類型 | 啟動函數 | 損失函數 |
|
||||
|:-----------:|:--------:|:--------------------------------------:|
|
||||
| 二元分類 | sigmoid | binary_crossentropy(二元交叉熵) |
|
||||
| 單標籤多元分類 | softmax | [[categorical_crossentropy]](分類交叉熵)<br> sparse_categorical_crossentropy |
|
||||
| 多標籤分類 | sigmoid | binary_crossentropy |
|
||||
| 回歸求值 | None | mse(均方誤差) |
|
||||
| 回歸求0~1值 | sigmoid | mse或binary_crossentropy |
|
||||
| 問題類型 | 啟動函數 | 損失函數 | 範例 |
|
||||
|:--------------:|:--------:|:------------------------------------------------------------------------------:|:------------------------------------------------------------------:|
|
||||
| 二元分類 | sigmoid | binary_crossentropy(二元交叉熵) | |
|
||||
| 單標籤多元分類 | softmax | [[categorical_crossentropy]](分類交叉熵)<br> sparse_categorical_crossentropy | 範例:[[An example that use categorical_crossentropy and softmax]] |
|
||||
| 多標籤分類 | sigmoid | binary_crossentropy | |
|
||||
| 回歸求值 | None | mse(均方誤差) | |
|
||||
| 回歸求0~1值 | sigmoid | mse或binary_crossentropy | |
|
||||
|
||||
|
||||
@@ -1,2 +1,3 @@
|
||||
- 僅適用於 one-hot 編碼。
|
||||
- 如果輸出不是 one-hot,而是整數標籤,也就是直接輸出 0、1、2,而不是一個array(`[0, 0, 0, 1, 0]` 之類),那就需要 sparse_categorical_crossentropy。
|
||||
- 如果輸出不是 one-hot,而是整數標籤,也就是直接輸出 0、1、2,而不是一個array(`[0, 0, 0, 1, 0]` 之類),那就需要 sparse_categorical_crossentropy。
|
||||
- 範例:[[An example that use categorical_crossentropy and softmax]]
|
||||
@@ -0,0 +1,31 @@
|
||||
An example that use [[categorical_crossentropy]] and softmax
|
||||
|
||||
```python
|
||||
dropRatio = 0.1
|
||||
|
||||
model = Sequential()
|
||||
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(self.DATA_LEN, 1)))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(MaxPooling1D(pool_size=2))
|
||||
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(MaxPooling1D(pool_size=2))
|
||||
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(MaxPooling1D(pool_size=2))
|
||||
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
|
||||
model.add(MaxPooling1D(pool_size=2))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
|
||||
model.add(MaxPooling1D(pool_size=2))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(Flatten())
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(Dense(units=128, activation='relu'))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(Dense(units=64, activation='relu'))
|
||||
model.add(Dropout(dropRatio))
|
||||
model.add(Dense(units=32, activation='relu'))
|
||||
model.add(Dense(units=len(self.DEVICE_LABEL), activation='softmax'))
|
||||
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.01), metrics=['accuracy'])
|
||||
```
|
||||
Reference in New Issue
Block a user